Deutsche Version  ACT
Flagship projects of the funding initiative

Wind to hydrogen

For the long-term storage of large amounts of electrical energy, it makes sense to use material storage systems, such as hydrogen or methane, after a chemical conversion. These can be used for reconversion or to support the public gas supply. In addition, the gases are also valuable elements for the chemical industry.

Physical Storage | BMBF
Sea water electrolysis 10.4.2017

Hydrogen from the sea

Scientists of Berlins Technische Universität Berlin and Freie Universität explore catalytic systems for hydrogen electrolysis directly from seawater. The non-precious metal catalysts should be inexpensive to produce. They make it possible to store renewable energy as hydrogen even at sites with water shortage. This option could be used for offshore wind farms or solar thermal power plants. ... more


Physical Storage | BMWi
Elektrolysis 12.4.2017

Hydrogen production in the megawatt-scale

In the P2G electrolysis project, researchers worked on developing and testing an optimised H2 generation plant prototype based on alkaline electrolysis technology in the 300 kWel class. Based on the currently available AEL technology, it is intended to exploit the development potential technically necessary for the entire plant and prepare the upscaling to the lower megawatt class. ... more


Physical Storage | BMWi
Power-to-Gas 12.4.2017

Gas and fuel from wind

Can wind be stored? Siemens, Linde, RheinMain University of Applied Sciences and the Mainz municipal utility company want to enable that during periods with no wind at “Energiepark Mainz” (Mainz Energy Park). For this purpose the researchers are producing hydrogen from wind energy. From 2015, it is intended to produce hydrogen using a Power-to-Gas plant at the newly developed Mainz Energy Park. ... more


Overarching Themes | BMWi
Wind-hyrogen systems 12.4.2017

Temporarily store excess wind in hydrogen

How can surplus wind energy be stored efficiently in the form of hydrogen in a large scale? Scientists consider the value chain from a technical and economic point of view in the project WESpe. The Analysis includes electrolysis, underground storage facilities and the connection to gas grids. ... more


Physical Storage | BMWi
ENABEL: PEM electrolyser 12.4.2017

Power gap filler in the megawatt class

In the project "Stromlückenfüller" Researchers investigate a power-to-gas-to-power concept. The aim is to buffer excess solar and wind power in the form of hydrogen. For the conversion, the researchers are developing a PEM electrolyzer stack for a rated input power of one megawatt. The electrolyzer combines with a hydrogen storage and biogas technology giving an efficient storage system. ... more


Overarching Themes | BMWi
Cavern storage 12.4.2017

Using salt caverns throughout Germany

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists are developing criteria that enable locations to be assessed even if the exploration is still at an early stage. Compared with the previous InSpEE project, the researchers have now widened their investigations to cover all of Germany and also special salt formations... more


Supported by: The Federal Government on the basis of a decision by the German Bundestag

Dates

no news in this list.